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Nonequilibrium steady states in the quantum XXZ spin chain
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We investigate the real-time dynamics of a critical spin-1/2 chain (XXZ model) prepared in an inhomogeneous
initial state with different magnetizations on the left and right halves. Using the time-evolving block decimation
method, we follow the front propagation by measuring the magnetization and entanglement entropy profiles.
At long times, as in the free fermion case [Antal et al., Phys. Rev. E 59, 4912 (1999)], a large central region
develops where correlations become time independent and translation invariant. The shape and speed of the
fronts is studied numerically and we evaluate the stationary current as a function of initial magnetic field and
as a function of the anisotropy �. We compare the results with the conductance of a Tomonaga-Luttinger
liquid, and with the exact free-fermion solution at � = 0. We also investigate the two-point correlations in
the stationary region and find a good agreement with the “twisted” form obtained by Lancaster and Mitra
[Phys. Rev. E 81, 061134 (2010)] using bosonization. Some deviations are nevertheless observed for strong
currents.
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I. INTRODUCTION

Quantum quenches have become an active field of
research,1 in part due to their experimental feasibility in cold
atoms systems.2 These quenches also offer an interesting
framework to address basic questions about nonequilibrium
phenomena in general and transport or thermalization in
isolated systems in particular. Quantum quenches in spin
chains have also been used to benchmark powerful real-time
simulation methods such as adaptive time-dependent density
matrix renormalization group (DMRG)3 or time-evolving
block decimation (TEBD).4

In this paper we focus on the steady states which emerge
when a gapless quantum spin chain
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is initially prepared in a “domain-wall” state with different
magnetizations, say 〈Sz

i 〉 = ±m0, on the left and on the right
halves of the chain. For instance, we may choose the initial
state to be the ground state of the following Hamiltonian:5

Ht<0 = H + h

L/2−1∑
i=−L/2

Sz
i tanh(i), (2)

and the evolution for t > 0 is computed using H . The study of
such type of initial conditions has been initiated by Antal
et al.6 (free fermion model) and have been extended in
many directions since then: numerics on the XXZ chain,3,7,8

dynamics of the formation of a quasi-long-range correlations,9

initial state with magnetic field gradient,10 bosonization or
continuum limit,10,11 Bethe-Ansatz approach (gapped case),12

influence of an additional defect at the origin,13 or full counting
statistics in the free fermion case.14 The case where the
initial state has different temperatures on both sides was also
considered.15–18 We note that from of the point of view of
the energy, this quench is a global one since the initial state
has a finite energy density above the ground state of Eq. (1).
On the other hand, it may be considered as local since, far

from the origin (i = 0), the initial state matches a magnetized
eigenstate of Eq. (1).

When the chain is gapless (|�| � 1) a central region of
length l expands ballistically with time t . Inside this region,
the correlations become independent of time. In the limit of
long times (but with l still small compared to the total length L

of the chain) we thus have a large segment where a steady state
can be observed. These correlations are not that of the ground
state since the central region supports some particle current
flowing from the left to the right. One aim of this work is to
characterize this nonequilibrium steady-state (NESS) and to
make contact with some transport properties of the chain, such
as the conductance. This approach simply follows the unitary
evolution of a finite and isolated system, and does not make use
of Lagrange multipliers to force some particle and/or energy
currents through the system19,20 nor does it make use of a
Lindblad equation to describe the couplings to reservoirs.21–23

The paper is organized as follows. In Sec. II we review
some results about the noninteracting case (� = 0). Section III
is a summary of the results of a bosonization approach in
the interacting case. In Sec. IV we present the numerical
result for the front propagation, and Sec. V deals with the
dynamics of the entanglement entropy. In Sec. VI we analyze
the evolution of the magnetization current and then discuss
how it is related to transport (conductance). Section VII is an
analysis of the correlation functions in the NESS. Sections VI
and VII contain some discussion of the validity and limitations
of the bosonization approach for this problem. The last section
provides a summary and discusses some future directions. A
derivation of the noninteracting NESS for a general initial state
is given in Appendixes A and B.

II. FREE FERMION CASE � = 0

The dynamics and the steady state are relatively well
understood6 in the case of the XX chain (� = 0), which
reduces to a free fermion problem. There, the growing central
region with zero magnetization is bounded by two fronts
propagating to the left and to the right. The width of each
front also grows with time since the leading edge of the front
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has a speed vmax which is larger than that of the “back” of
the front, which propagates at a lower speed vmin. These two
speeds are vmax = 1 and vmin = cos(πm0). It is only in the
limit of an infinitesimally small bias |m0| � 1 that vmin and
vmax coincide with the Fermi velocity.24 Unless we start from a
saturated initial state (i.e., m0 = 1

2 ), vmin remains nonzero and
the central region extends ballistically. The scaling form of the
front has been derived for free fermions6 and it is interesting to
note that a simple hydrodynamic/kinematic argument25 is able
also give the exact shape of the front, including the exact values
of the velocity vmin of the back of the fronts (this argument
will be reviewed in Sec. V C).

At long times (1 � vmint and vmaxt � L) the NESS occu-
pies a large region of the chain and becomes asymptotically
translation invariant. It can thus be described by its occupation
numbers in Fourier space, 〈c†pcp〉NESS. In the case of Antal’s
quench, the result is

〈c†pcp〉NESS =
{

1 for p ∈ [−k−
F ,k+

F ],
0 otherwise

(3)

with

k±
F = π

(
1
2 ± m0

)
. (4)

We note that k+
F is the Fermi momentum of the left reservoir

at t = 0, while k−
F is that of the right one. For a general initial

state at t = 0 one can show in the noninteracting case that
〈c†pcp〉NESS is equal to the occupation number 〈c†pcp〉L of the
left reservoir if p > 0 and is equal to 〈c†pcp〉R (that of the right
reservoir) if p < 0 (Fig. 18). This complete decoupling be-
tween left movers and right movers has already been obtained
by explicit calculations for a few specific initial states,6,15 but
we give a simple and general microscopic derivation of this
result in Appendix A. This results also agrees with the hydro-
dynamic description developed in Ref. 19. This steady state is
a simple example of an athermal state (which nevertheless has
the form of a generalized Gibbs state;26 see Sec. A 2).

III. TOMONAGA-LUTTINGER LIQUID PHYSICS
AND BOSONIZATION

The steady state which develops in the presence of
interactions (� �= 0) is not known exactly, even though some
rigorous results have been obtained concerning some other
NESS in the XXZ chain.21,23 We begin by a brief summary of
the results obtained in a bosonization approach.

Lancaster and Mitra10 have used bosonization to study
the spin dynamics from a initial domain-wall state. This
continuum limit retains a single velocity in the problem
(linearized dispersion relation), and the detailed shape of the
front is therefore not captured. In particular, the fact that the
fronts widen (vmin < vmax) with time is not reproduced. One
important result is however the simple form of the correlations
in the NESS region:

〈S+
x+nS

−
x 〉NESS = 〈S+

x+nS
−
x 〉gse

−iθn, (5)〈
Sz

x+nS
z
x

〉
NESS = 〈

Sz
x+nS

z
x

〉
gs. (6)

Here the initial state is the ground state of Eq. (2), with an
external magnetic field such that the magnetization is ±m0 far

from the origin (x → ∓∞). 〈· · ·〉gs denotes the expectation
values in the ground state of the homogeneous chain at
zero magnetization. The (nearest-neighbor) angle θ which
describes the “twist” between the steady-state and ground-state
correlations is given by

θ = πm0

K
, (7)

where K is the Luttinger parameter. For the XXZ chain (in
zero external magnetic field), K is a known function of the
anisotropy �:27,28

K−1 = 2

π
arccos �. (8)

This bosonization result for correlation functions [Eqs. (5)–
(7)] is remarkable, since the correlations appear to be almost
identical to that of the ground state,29 a somewhat uncommon
situation in the context of quenches.

Although qualified as “intriguing”10 and often interpreted
as a spatial inhomogeneity and an absence of equilibration,
the oscillatory factor is a particularly simple way to introduce
some particle (spin) current on the top of the ground-state
correlations. Such oscillations are already present in the free
fermion case6,20 since Eq. (3) is equivalent to the usual
(nonshifted) half filled Fermi sea, but with modified fermions
operators: c̃†x = c

†
xe

ixπm0 . In momentum space this redefinition
of the fermion operators amounts to a simple shift: c̃

†
p =

c
†
p+m0/π

. This observation immediately leads to Eqs. (5) and (6)
with θ = m0/π in the noninteracting case (K = 1 at � = 0).
From this point of view, the phase factor e−iθn is a the direct
consequence of having more spinons going to the right than
going to the left. Since bosonization is a long-wavelength and
low-energy approach, we may expect this form to hold at long
distances, at least for small initial bias m0 where the current
carrying state is a low-energy state. We will test this result
numerically in the next section. Somewhat surprisingly, we
will find in Sec. VII that Eq. (5) holds quite accurately even at
short distances and for finite bias.

IV. FRONT PROPAGATION

A. Velocities

We use the TEBD to compute the time evolution from
a domain-wall state. Our code is based on the OPEN TEBD

software.30 Unless specified otherwise, the chain has length
L = 80 sites and the wave functions are encoded using
matrices of size χ = 100. The initial state is chosen to be the
ground state of the XXZ Hamiltonian with open boundary
conditions and a spatially varying magnetic field in the z

direction [Eq. (2)]. As discussed in Sec. V, the amount of
entanglement generated by these quenches is rather low and
we checked that this value of χ is sufficient to ensure a
good precision on all the observables discussed here. As an
illustration, Fig. 1 shows the discarded weight measured at
each time step and at each truncation of the spectrum of the
reduced density matrices. It remains relatively small during all
the time evolution of the system (a few 10−7 at most).

Typical initial magnetization profiles are shown in Fig. 2.
At t = 0 (blue lines) the external magnetic field is switched
off and the time evolution is performed according to H only.
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FIG. 1. (Color online) Weight of the discarded Schmidt eigen-
values during the TEBD truncation at each time step. The weight
is summed over every link of the chain for each time step The
figure shows the data for an anisotropy parameter � = 0.4 and an
initial magnetic field of 75% of the saturation value [h = fsat(1 − �),
fsat = 0.75].

Note that contrary to Ref. 10, the value of � is not changed
between t < 0 and t > 0.

As already noted in Ref. 3 (where m0 = 1
2 ), the domain-

wall quench in an XXZ model gives rise to a ballistic front
propagation. As for the free-fermion case, the magnetization
profile 〈Sz

r 〉 acquires a limiting shape when the position r is
rescaled by time. Figure 3 indeed shows a reasonably good

FIG. 2. (Color online) Magnetization as a function of site position
i at the initial time (blue) and at t = 40 (red). Anisotropy parameter
� = 0.4. The different panels correspond to different amplitudes of
the initial magnetic field h, and hence different heights of the initial
magnetization steps h = fsathsat(�), where hsat = 1 − �. From top
to bottom fsat = 0.1, 0.75, and 0.95.
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FIG. 3. (Color online) Magnetization front in a chain of length
L = 200 sites (keeping respectively 150, 100, 250, and 150 states
from top to bottom). Top panel: � = −0.5, h = 0.8 (m0 
 0.16,
indicated by an horizontal dashed line). Second panel � = 0.6,
h = 0.4 (m0 = 0.5). Third panel: � = 0.6, h = 0.3 (m0 = 0.30).
Bottom panel: � = 0.6, h = 0.2 (m0 
 0.196). The position i is
scaled with time t to make apparent the emergence of a limiting
front shape. A dashed red vertical line indicates the velocity of
elementary excitations in an homogeneous XXZ chain at 〈Sz〉 = 0
[given by Eq. (9)] and a dashed blue line indicates that velocity
for 〈Sz〉 = m0 [from the numerical solution of the Bethe-Ansatz
equations in presence of an external magnetic field (Ref. 31)].

collapse of the magnetization curves computed at different
times.

The front region is characterized by two different velocities:
the leading edge of the front propagates at a velocity vmax which
is larger than the velocity vmin of the back of the front. In the
free fermion case these velocities correspond respectively to
the Fermi velocities at magnetization 0, and m0. In presence
of interactions (� �= 0) the analog of the Fermi velocity is the
group velocity of the spin excitations. At zero magnetization
this velocity is a known function of �:32

v = π

2
sin(γ )/γ, (9)

cos(γ ) = −�. (10)

The above velocity corresponds to the red vertical lines in
Fig. 3 (see also the inset of Fig. 4). We observe a reasonable
agreement with the location of the leading edge of the front.
Since finite-size effects are presumably still important, the
front velocity vmax may exactly coincide with the spinon
velocity of Eq. (9) in the thermodynamic and long-time limit.
A front propagation at this velocity has also been observed in
a different quench of the XXZ spin chain.33 Still, we note that
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FIG. 4. (Color online) Scaling of the oscillations in the magneti-
zation front in a chain of length L = 400 sites (keeping 200 states)
with � = 0.6, h = 0.2 (m0 
 0.196). In the main panel the position
i has been shifted by tvmax, where vmax 
 0.567 51 is an estimate
of the front velocity from the spinon group velocity in a uniform
chain at zero magnetization. The distance to the edge of the front has
then been rescaled by a factor t−1/3 to make contact with the oscil-
lations observed in the noninteracting case (Ref. 35). In the inset the
magnetization 〈Sz

i 〉 is shown without any rescaling of the position i.
The red, green, and blue dashed vertical lines correspond to estimates
of the front-edge locations i = tvmax at times t = 100, 150, and 190
respectively.

in the present data the front seems to propagate slightly faster
than Eq. (9) (case m0 = 1

2 in particular).
At finite magnetization there is no closed formula for the

group velocity of the spin excitations of the XXZ chain, but
it can be determined by solving numerically some integral
equations.31 The result corresponds to the vertical blue lines
in Fig. 3. Again the agreement with the front locations is
reasonable but it is not clear whether this velocity of the
excitations in the homogeneous chain matches that vmin of the
back of the front. In the fully polarized case (fsat = 1) we get
an almost perfect collapse of the different front profiles. In this
particular case the back of the front stays at the origin (r/t = 0)
indicating clearly that the lower velocity vmin vanishes in this
case where m0 = 1/2 (as for free fermions).

B. Density oscillations

To conclude this section devoted to the magnetization
fronts, we describe the density oscillations present ahead of the
front. These oscillations are visible in Fig. 3, and are magnified
in Fig. 4 for a longer chain (400 sites) and longer times (up
to t = 190). The spatial period of these oscillations grows
with time, but probably more slowly than t . This should be
compared with the t1/3 law that is present in the free fermion
case.14,35 The latter are related to the singular dependence
of the local Fermi momentum with the spatial position, at
the front edge. Our numerics are compatible with such type
of power-law behavior of the period, although the exponent
could be different. In any case, the spatial period is much
longer than the Fermi wavelength and these oscillations are
reminiscent of some soliton trains associated to shock waves
in nonlinear Luttinger liquids.36 It is interesting to notice that

in this interacting case the oscillations take place ahead of the
front which is in sharp contrast with the � = 0 case where
the oscillation takes place just behind the leading edge of the
front.14,35

V. ENTANGLEMENT ENTROPY

The time evolution of the entanglement entropy was studied
by Eisler et al.37 in the particular case where � = 0, m0 = 1

2 ,
and L = ∞. There, it was shown that the entanglement associ-
ated to a left-right partition of the chain grows logarithmically
with time. Here we describe the entanglement profiles obtained
in finite chains for m0 < 1

2 when varying the location of the
boundary between the two subsystems.

A. Steady-state entanglement

As for the DMRG method, TEBD simulations are based
on matrix-product states and they are all the more demanding
to perform as the entanglement entropy (EE) associated to
left-right partitions of the chain is high. On the other hand,
global quenches often produce highly entangled states, with
entanglement entropies which would scale as the volume of
the subsystem, as for thermal distributions. These situations
are therefore difficult to simulate at long times. The situation
is quite different here, where the NESS entanglement entropy
turns out to be rather low. This is easy to understand for � = 0
since the NESS is in that case a boosted Fermi with exactly the
same EE as the ground state.38 Thanks to these relatively low
entropies—of order 1 for a chain of length L = 80—a good
convergence is observed even with a rather small number of
Schmidt eigenvalues in the TEBD simulations (we use χ =
100 here).

Figures 5 and 6 show that the entropy stays relatively small
during the whole evolution,39 and hardly exceeds the ground
state value [dotted lines and Eq. (11)]. The only situation where
the EE is above the ground-state value is when the cut is
inside the region of a front. The front location is indeed clearly
visible on the EE plots and the space-time picture shows a
characteristic “light cone” shape.

The NESS region appears to have an entropy profile which
is very close to that of the ground state. The latter is well
described by conformal field theory and the leading term in
the entropy of a segment of length l in an open critical chain
(central charge c = 1) of length L is40

S(l) = 1

6
ln

[
L sin

(
πl

L

)]
+ C (11)

(C is a nonuniversal constant). The agreement with the
numerics in the NESS region suggests that the NESS is not
a thermal-like state with extensive entropy, but is instead
entropically close to some low-energy critical state. This is
indeed the case for the � = 0 case since the NESS is a
boosted Fermi sea whose entanglement profile is identical to
the Fermi sea “at rest” (ground state). In the bosonization
approach10 the NESS can be described by adding a classical
“twist” S+(x,t) → S+(x,t) exp (ihx/v) (v is the velocity) and
therefore shares the same entanglement profile as the ground
state.
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FIG. 5. (Color online) Entanglement entropy between the left
part (sites j < i) and the right (sites j � i) as a function of the cut
position i and for different times (curves shifted by 0.35 for clarity).
Bottom panel: magnetization profile in the initial state and at t = 40.
Dotted line: EE in the ground state of the chain, without external
magnetic field. Full line: Eq. (11). Parameters: � = 0.0 and initial
magnetization m0 = 0.17.

B. Entanglement between the left- and right- moving fronts

Here we discuss the influence of the initial conditions on the
entanglement entropy profile. More specifically, we compare
the two following initial conditions: the smooth “tanh” profile
of Eq. (2) and a “step” profile associated to the following
Hamiltonian:

Ht<0 = H + h

⎛
⎝−

−1∑
i=−L/2

Sz
i +

L/2−1∑
i=0

Sz
i

⎞
⎠ . (12)

FIG. 6. (Color online) Same as Fig. 5 for � = 0.6 and m0 = 0.19.

FIG. 7. (Color online) Same as Fig. 5 but with an initial
state constructed from a “step” magnetic field profile [Eq. (12)].
Parameters: � = 0.0 and initial magnetization m0 = 0.17.

The two situations lead to the same NESS at long times, but
the entanglement profiles are different in both cases. The EE
profiles associated to this step initial condition is plotted in
Fig. 7 in the � = 0 case. These result should be compared with
Fig. 5: in the “step” case the EE of the NESS region is shifted by
some constant S0 of order 1. This shift is naturally interpreted
as a contribution from the entanglement between the left front
with the right front. Although this does not physically affect
the NESS, it is numerically advantageous to start from a
smooth (tanh) magnetic field in order to minimize the EE
between the left- and right-moving excitations that form the
fronts.41

Below we provide an intuitive explanation of this phe-
nomenon. In the limit where the initial magnetic field varies
smoothly at the lattice spacing scale, one may consider that
the fermions form locally a Fermi sea. In that situation, each
occupied state has a momentum and velocity and the classical
picture predicts that the particles will flow to the left or to the
right at constant velocity. In this picture, there is no particular
entanglement associated to the fronts. Now consider a weak but
sharp magnetic field. One can view this as a perturbation of the
homogeneous Fermi sea. But since the spatial dependence of
the perturbation is sharp in real space, it contains many Fourier
components. As a consequence, the initial state contains some
excited particles which are in a linear combination of different
momentum states. Since the perturbation is weak, these will
be close to ±kF = ±π/2. During the evolution the wave
function of these excitations will split into a left- and right-
moving parts. Naturally, these two parts are entangled [would
be as high as log(2) for 1√

2
(c†p + c

†
−p)]. In this picture the

two fronts turn out to be entangled due to the presence of
wave packets with Fourier components at p ∼ ±π/2 which
are initially created at the origin by the magnetic field
step.
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C. Classical picture, very long times, and extensive
entanglement entropy

Although we are mostly interested in the dynamics before
the fronts reach the ends of the chain, we present here some
data concerning the evolution at times t much larger than
L/vmax. Doing so is numerically not possible with TEBD and
we therefore focus on the free fermion chain at � = 0.

A classical (also called hydrodynamical), description was
introduced in Ref. 25. In this approximation the system is
characterized by the density n(p,r,t) of particles having a
well-defined position r and momentum p at time t . At the
initial time, this function describes two Fermi seas at different
densities for r > 0 and r < 0:

n(p,r < 0,t = 0) =
{

1 for |p| � k+
F ,

0 for |p| > k+
F ,

(13)

n(p,r > 0,t = 0) =
{

1 for |p| � k−
F ,

0 for |p| > k−
F

with the Fermi momenta k±
F given by Eq. (4). Then, each

particle (fermion) with momentum p propagates ballistically
at velocity vp = sin(p):

∂

∂t
n(p,r,t) = −vp

∂

∂r
n(p,r,t). (14)

For the initial condition of Eq. (13), the time evolution
amounts follow the occupied (n = 1) and empty regions
(n = 0) of phase space (r and p) according to the free
particle propagation. This is schematically represented in
Fig. 8. The total density (or magnetization) n(r,t) at a given
point r is obtained by integrating n(p,r,t) over momenta:
n(r,t) = ∫ π

−π
n(p,r,t)dp/(2π ). For 1 � t � L this approxi-

mation reproduces the exact shape of the front in the limit of
long times:

n(r,t) =

⎧⎪⎨
⎪⎩

1
2 for 0 � r/t � sin(k+

F ),
arccos(r/t)

π
+ 1

2 − m0 for sin(k+
F ) � r/t � 1,

1
2 − m0 for 1 � r/t.

(15)

When a particle reaches the end of the chain we then assume
that the momentum (and thus velocity) is simply reversed
(see bottom of Fig. 8). This approach leads to the results
shown in Fig. 9. The comparison between the exact result
and the classical/hydrodynamical approximation shows that
the agreement only slightly deteriorates at long times.

With a Fermi velocity equal to v = 1, the two fronts cross at
t = L, 2L, 3L, etc. Figure 10 shows a rapid increase of entropy
each time the fronts cross (vertical lines). After a number
crossings proportional to the system size, the magnetization
slowly equilibrate to 〈Sz〉 = 0 (data not shown) and the
entanglement becomes extensive (see also Ref. 42 for an exact
diagonalization study of the long-time limit in small chains).

We observed in the numerics that for t  L (many
bounces) the exact fermionic correlations become diagonal
in momentum space (when measured sufficiently far from the
system boundaries):

〈c†p′cp〉tL ∼ δ(p − p′)n(p). (16)

t v(k)

t′ v(k)

−k
F
+

kF
+

kF
−

−kF
−

kF
+

−kF
+

kF
−

−kF
−

kF
+

−kF
+

kF
−

−kF
−

k

r
L/2−L/2

π/2

−π/2

π

−π

k

−L/2 L/2

π/2

−π/2

π

−π

k

−L/2 L/2

π/2

−π/2

π

−π

FIG. 8. (Color online) Classical evolution of the density n(p,r,t).
The occupied region of phase space, where n(p,r,t) = 1 is colored
in blue (zero otherwise). The red curve represents the position of a
particle with momentum p located initially at r = 0. For k−

F � |p| �
k+

F , this curve separates the occupied (n = 1) from the empty region
(n = 0) of phase space. Top: Short time t ′. The locations of front of the
fronts and back of the fronts are indicated by dashed red lines. Center:
time t ′ after the first bounce at the boundaries. Bottom: In the long-
time limit L � t the red curve spans the interval [−L/2,L/2] many
times and the the striped area therefore corresponds to an alternation
of thin occupied and empty regions, with an average density n(p,r,t =
∞) = 1

2 for k−
F � |p| � k+

F .
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FIG. 9. (Color online) Density profile for � = 0, L = 200, and
h0 = √

2/2 (corresponding to densities 0.25 and 0.75 at t = 0).
Crosses: exact result. Red: classical result (thermodynamic limit).

This diagonal form is equivalent to the translation invariance
of 〈c†i cj 〉tL and can be intuitively understood from the fact
that the system loses the “memory” of the initial front location
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FIG. 10. (Color online) Entanglement entropy between the two
halves of the chain as a function of time (scale by L). The vertical
lines correspond to the times where the two fronts cross each other in
the center of the chain. The limit t/L � 1 for m0 = 1

2 corresponds
to the logarithmic increase of the entropy studied in Ref. 37.

(see also Appendix A). n(p) is the initial occupation number
〈c†pcp〉t=0 defined on the whole chain (average of the left
and right reservoir contributions). This conserved quantity is
the sum of two Fermi distributions with two different Fermi
momenta k+

F and k−
F . Assuming k+

F > k−
F � 0 we have

〈c†pcp〉tL =

⎧⎪⎨
⎪⎩

0 for |p| > k+
F ,

1
2 for k+

F > |p| > k−
F ,

1 for k−
F > |p|.

(17)

In the infinite time limit this distribution is also naturally
obtained from the classical picture (bottom of Fig. 8).

The reduced density matrix and the entanglement entropy
of a segment can be constructed entirely from its two-point
correlations.43 The fact that some of the fermion modes are
partially occupied [n(p) = 1/2 for k+

F > |p| > k−
F ] naturally

leads to an extensive entanglement entropy. Indeed each of
these partially occupied modes contribute by an amount log(2)
to the Von Neumann entropy. So, from a simple counting of the
number of these modes we can expect the entropy of a segment
of length l to scale as ∼l log(2)|k+

F − k−
F |/π = 2l log(2)|m0|.

This is consistent with our numerics as well as with a direct
and rigorous calculation.44 The large entropies observed at
long times in Fig. 10 can thus be explained by the emergence
of a Fermi distribution with partially occupied modes in the
interval k+

F > |p| > k−
F . This long-time limit is a particular

realization of the dephasing phenomenon discussed in Ref. 45.

VI. CURRENT DYNAMICS AND CONDUCTANCE

We analyze here how the current reaches a stationary
value. We first focus on the free Fermion case (� = 0),
for which very long chains and long times can easily be
studied. In Fig. 11 the current J (t) = Im〈S+

0 S−
1 〉 measured

FIG. 11. (Color online) Time evolution of the spin current J

measured in the center of a chain of length L = 1000 and for � = 0
(free fermions). Green curve: step initial magnetic field. Blue: tanh
initial magnetic field.
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FIG. 12. (Color online) Spin current J = Im〈S+
0 S1〉 measured in

the center of the chain in the steady-state regime. Inset: The slope
G = dJ/dh|h=0 (conductance) is plotted as a function of �, and
matches the Tomonaga-Luttinger liquid prediction [Eq. (18)].

in the center of a long chain is plotted as a function of
t . We compare two initial conditions: the step (green) and
tanh (blue) initial magnetic field. In both cases the current
rapidly reaches a quasistationary regime with small amplitude
residual oscillations [O(1/t)] which have a period t = 2π .
These oscillations have been previously observed and analyzed
in Ref. 7. This quasistationary regime is attained at relatively
short times, t 
 30–40. When the oscillations are averaged
out, the value of the current is then close to h/π , the current
carried by the boosted Fermi sea (black horizontal line). For
the tanh initial conditions the oscillations turn out to be slightly
smaller and the average current is closer to the thermodynamic
value h/π .

From this we conclude that averaging over a few oscillations
the current for t 
 40 is a legitimate way to estimate
numerically the value of the stationary current. This is the
procedure used to obtain the results shown in Fig. 12.

Although the current is not strictly linear in h (except in
the free fermion case for h < 1), we observe an extended
linear regime. The slope G = dJ/dh|h=0 is the conductance
of the system, and the values obtained numerically match the
Tomonaga-Luttinger (TL) liquid prediction (inset of Fig. 12):46

G = K

π
, (18)

in units where the “electric charge” e and h̄ are set to unity.
This result is in agreement with Ref. 7. It is however interesting
to note that the TL conductance is obtained here in an isolated
quantum, and therefore without any dissipation. This may
sound counterintuitive since a finite conductance G is naturally
associated to a dissipated power P = Jh (h is the chemical

FIG. 13. (Color online) Crosses: various correlations measured
at time t = 40 in a chain of length 80 for � = 0 and h/hsat = 0.25
(TEBD with χ = 100 states), and m0 
 0.08. From top to bottom:
(i) Modulus of 〈c†i0ci0+r〉, (ii) argument of 〈c†i0ci0+r〉, (iii) modulus
of 〈S+

i0S
−
i0+r〉, (iv) argument of 〈S+

i0S
−
i0+r〉, (v) magnetization. For (i)–

(iv), the circles represent the same correlator measured in the zero-
magnetization ground state and multiplied by a phase factor eiθr . θ

is determined numerically by a fit over five sites in the middle of the
chain (from 41 to 45).

potential difference). This is made possible by the fact that
the inhomogeneous external magnetic field h is switched
off during the evolution. This way, a current can flow from
the high-density reservoir to the low-density reservoir while
keeping constant the energy.

VII. CORRELATIONS IN THE STATIONARY STATE

In this section we discuss the two-point correlations in the
stationary region. The numerical results are summarized in
Figs. 13–16.

Noninteracting case. In the thermodynamic limit and at
long times the stationary state is known to be a “boosted”
Fermi sea for � = 0. As discussed in Sec. II, Eqs. (5) hold
exactly in that case, with a twist angle θ (Fermi momentum
shift) given by θ = πm0. The magnetization profile (bottom
panel of Fig. 13) shows that the fronts have not reached the
ends of the chain at t = 25 [for this value of h the velocities are
vmax = 1 and vmin = cos(πm0) 
 0.968]. The magnetization
shows some oscillations that are the spatial counterpart of the
temporal oscillations displayed in Fig. 11. The oscillations
have a spatial period of two sites (the center of the chain is
close to half filled). When the front has reached the end of the
chain, the amplitude of these oscillations is O(1/L). This is
a finite-size effect but it remains sizable for a chain of length
80. At the same time, Fig. 13 indicates that the two-point
correlations (fermionic as well as spin-spin) almost perfectly
match Eqs. (5) in the central region. What we learn here is that
the two-point correlation functions converge relatively rapidly
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FIG. 14. (Color online) Same as Fig. 13 for � = 0.4,
h/hsat = 0.25.

to their asymptotic form, even for relatively short times and
small chains.

Interaction and weak current. Next, in Fig. 14 we inves-
tigate a situation with moderate interactions (� = 0.4) and a
weak bias h/hsat = 0.25. Compared to the free fermion case,
the fronts propagate at slightly lower velocities. Still, a large
central region exhibit a constant magnetization 〈Sz〉 
 0 and
the [−15,15] can be considered as almost stationary. We note
that the spatial oscillations observed for 〈Sz〉 in the free fermion
case are practically invisible here.47

When inspecting the 〈S+
i S−

j 〉 and 〈c+
i cj 〉 correlations we

see that, in the region [−15,15] corresponding to an almost

FIG. 15. (Color online) Same as Fig. 13 for � = 0.6,
h/hsat = 0.75.

FIG. 16. (Color online) Same as Fig. 13 for � = −0.6,
h/hsat = 0.6.

flat magnetization, the moduli of the correlations match those
of the ground state. As for the complex argument of these
two-point functions, it is a linear function of the distance r

between the two points. The slope of this argument is used to
determine numerically the twist angle θ .

The agreement with Eqs. (5) was expected for � = 0
(at least for long times in long chains), but the agreement
here in presence of interactions (Fig. 14) was a priori not
granted. In fact, as discussed in Sec. III this is the bosonization
prediction10 for the NESS. A simple bosonization calculation
is not accurate to describe quantitatively the ground-state
correlations 〈S+

i0
S−

i0+r〉gs at short distances (of the order of
one lattice spacing). Similarly, this approach is a priori not
expected to be precise to describe the NESS correlations
〈S+

i0
S−

i0+r〉NESS when |r| ∼ O(1). But still, we find that the ratio
〈S+

i0
S−

i0+r〉NESS/〈S+
i0
S−

i0+r〉gs is remarkably close to a pure phase
factor eirθ [Eq. (5)]. Several aspects of interaction quenches
in the TL model have been studied48–51 but the present setup
(“Antal’s quench”) is particularly useful if one is interested in
comparing the lattice results to the bosonization prediction for
the NESS.

Interaction and strong current. At higher currents, one starts
to observe some small deviations from Eq. (5). This is the case
in Figs. 15 and 16. In Fig. 15 the stationary region has a
smaller extension, ∼[−10,10]. There, the correlations show
a reasonable agreement with Eq. (5), but not as precise as
in the two previous cases. The strongest deviations concern
the moduli of the correlations: |〈S+

i0
S−

i0+r〉NESS| turns out to
be larger than in the ground state in the ferromagnetic case
(Fig. 15) while the NESS correlations are larger than in the
ground state for antiferromagnetic � = −0.6 (Fig. 16).52 On
the other hand, the phase factor (panels 2 and 4 in Fig. 15) is
still a linear function of the distance r . These deviations reveal
some interaction and lattice effects which are not captured by
the continuum limit. Such deviations from Eq. (5) are observed
when the initial magnetic field approaches the saturation value
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FIG. 17. (Color online) The twist angle θ describing the steady-
state correlation [Eq. (5)]. The blue line corresponds to bosonization
result of Ref. 10: θ/π = m0

K(�) with K(�) given in Eq. (8).

hsat, which also coincides with the regime where the current
no longer varies linearly with h (Fig. 12). Equivalently, they
occur when the twist period l = 2π/θ becomes less than a few
(∼10) lattice spacings.

Twist. As explained above, the argument of two-point
correlations is linear in r (within the plateau region) and this
allows us to define a “twist” angle θ . The results of these fits
are displayed in Fig. 17, for different values of � and h. The
data are plotted as a function of the Luttinger parameter K

[Eq. (8)] and are compared with the bosonization result of
Lancaster and Mitra,10 namely

θ = πm0

K
. (19)

The agreement with our numerics is very good for ferro-
magnetic (positive) �, even for relatively strong currents
(fsat � 0.9). On the other hand, one can see in Fig. 17 that
the agreement somewhat deteriorates for � � 0. We would
however expect Eq. (19) to hold for small currents (small fsat),
whatever |�| < 1, and it should be exact for � = 0 (whatever
fsat). We attribute the observed discrepancy to finite-size (and
thus finite time) effects, and to the fact that central region is
not exactly steady for this system size (residual spatial and
temporal oscillations or magnetization gradient, etc.).

A possible way to interpret Eq. (5) is to consider the
following unitary transformation:53

U (θ ) = exp

⎛
⎝iθ

L/2−1∑
r=−L/2

rSz
r

⎞
⎠ , (20)

which satisfies

U (θ )†S+
i0
S−

i0+rU (θ ) = S+
i0
S−

i0+r exp(irθ ). (21)

FIG. 18. (Color online) Schematic representation of the distribu-
tion of the occupations numbers as a function of the momentum p in
the region where the nonequilibrium steady state is well established,
〈c†pcp〉NESS. The occupation 〈c†pcp〉L on the far left side of the chain,
which acts as a reservoir, contributes to the distribution of the right
movers on the NESS region, whereas 〈c†pcp〉R contributes to the
distribution of left movers.

We also have U (θ )†c†i0ci0+rU (θ ) = c
†
i0ci0+r exp (irθ ) since the

Jordan-Wigner string commutes with the Sz
r operators and thus

commutes with U . Starting from the ground state |ψ〉 we may
thus consider the following state:

U (θ )|ψ〉, (22)

as an approximation to the NESS. It is the exact NESS for the
free fermion point, since U (θ ) boosts all the single-particle
states from momentum p to p + θ . It is also possible to check
that the results of Ref. 10 (when specialized to the case where
� is not changed during the quench) also imply that Eq. (22)
is the NESS in the bosonization approximation. The twist
operator can also be written as

U (θ ) = exp

(
iθ

∑
j

r̂j

)
, (23)

where the sum runs over the particles (Jordan-Wigner
Fermions) and r̂j is the position operator of particle j .54

In this form it is clear that U performs a Galilean boost.
So, for a system with periodic boundary conditions in the
continuum (Galilean invariance), applying U on an eigenstate
gives another eigenstate (with a different energy). If |ψ〉 is
the ground state, U |ψ〉 sustains some particle current (in
the original frame) and is naturally a stationary state (an
eigenstate in fact). From this point of view, the deviations from
Eq. (5) we observed numerically in the strong current regime
are signatures of combined lattice (umklapp) and interaction
effects.

VIII. SUMMARY AND CONCLUSIONS

We have simulated numerically the real-time dynamics of
an XXZ spin chain starting at t = 0 from a state with different
magnetizations on the left and right halves. We have described
the shape of the propagating fronts, characterized by two
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velocities, and we have focused on the central region of the
chain where an homogeneous current-carrying steady state
develops. For moderate value of the magnetization bias, the
value of the current as well as the correlations in this steady-
state region turn out to be rather close to the bosonization
predictions of Lancaster and Mitra.10 Indeed, the correlations
〈S+

i S−
i+r〉 are close to that of the ground state but multiplied by

a phase factor exp (iθr). The value of θ is in good agreement
with the continuum limit result [Eq. (8)]. Also, contrary to
most global quenches, the entanglement of a subsystem in
the steady-state region is not extensive in the subsystem size
but it is instead close to that of the ground state (logarithmic
in the length of the subsystem). These properties are easily
understood in the free fermion case where the steady state is a
“boosted” Fermi sea. However, these are quite remarkable in
the presence of interactions (� �= 0). It is only at large values
of the current (or initial bias) that we begin to observe some
deviations from the simple picture of the steady state being a
“boosted” ground state. When the current becomes of the order
of the maximum current, some corrections to the modulus of
the steady-state correlations appear (compared to that of the
ground state) and although the twist angle θ is still well defined,
it is no longer given by its bosonisation value [Eq. (8)].

How to address the combined lattice and interaction effects
which are responsible for these deviations from the “boost”
picture is an interesting problem. One possible approach could
be to include the effects of the nonlinear dispersion relation
(lattice effects) in a quantum hydrodynamic framework as was
done in Ref. 55. On the other hand, since the XXZ spin chain
is an integrable system, it may be possible to construct the
steady state using Bethe-Ansatz or integrability techniques,
similar to that of Refs. 21 and 23. It would also be interesting
to understand if the steady state can be described in terms of
one or several excited eigenstate(s) of the Hamiltonian.56 Some
results (Loschmidt echo, initial energy distribution, etc.) have
already been obtained using the Bethe-Ansatz in the case where
the m0 = 1

2 (and � > 1),12 but the cases where the reservoirs
are partially polarized at t = 0 is clearly more complex.
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APPENDIX A: STEADY STATE IN THE
FREE-FERMION CASE

This section is devoted to the XX chain (� = 0).

1. Long-time limit of correlation functions

Inspired by some exact results obtained for a specific initial
state,15 we look here for the general relation between the NESS
and the correlation functions of the initial state. We make the
assumption that, far on the left and far on the right of the

(infinite) chain, the correlations are Gaussian and that the
two-point correlations are asymptotically translation invariant.
The left and right parts play the role of reservoirs, and they
are completely specified by their occupation numbers 〈c†pcp〉L
and 〈c†pcp〉R (see Fig. 18). The ground state of Eq. (2) is
of this type but the arguments below apply to more general
initial states.57 This applies, for instance, to two half chains
prepared at different temperatures and/or external magnetic
field.

For � = 0 Eq. (1) reduces (Jordan-Wigner transformation)
to a free fermion model, and is diagonalized in momentum
space:

H =
∑

p

εpc†pcp, εp = − cos(p), (A1)

c†p = 1√
N

∑
n

eipnc†n, (A2)

and the real-space fermion operators obey the following time
evolution:

cm(t) = eiHtcm(0)e−iH t =
∫

dp

2π
cpei(pm−εpt). (A3)

We assume that the initial state is defined by a Gaussian
density matrix. It can either be the ground state or the
finite-temperature equilibrium density matrix associated to
some arbitrary quadratic Hamiltonian. Then, the free-fermion
dynamics will preserve this Gaussian structure and the state
(density matrix) will be fully determined by its two-point
correlations (Wick theorem). We therefore focus on the
correlations:

〈c+
m(t)cn(t)〉 =

∫
dp

2π
e−ip(m−n)

∫
dq

2π
Fp(q)

× eit(εp+q/2−εp−q/2)−i(m+n)q/2, (A4)

Fp(q) = N〈c+
p+q/2cp−q/2〉t=0. (A5)

From now we will assume that for sufficiently long time
the correlations between two sites at finite distance from the
origin become independent of t . In other words, we will
assume that a steady-state region develops. The contributions
from terms where q is of order 1 will give rise to a
fast oscillating factor since εp−q/2 − εp+q/2 will be finite.
These may be important to understand the front shape and
dynamics6 but will not contribute to the correlation between
sites in the steady-state region. Instead, the correlations
which develop in the steady state can only originate from
terms where t(εp−q/2 − εp+v/2) is (at most) of order 1.
So, following Ref. 15, we make the following change of
variable:

u = 2t sin(p) sin(q/2), (A6)

du = t sin(p) cos(q/2)dq (A7)
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THIAGO SABETTA AND GRÉGOIRE MISGUICH PHYSICAL REVIEW B 88, 245114 (2013)

to write

〈c+
m(t)cn(t)〉 =

∫
dp

2π
e−ip(m−n)

∫
dq

2π
Fp(q)

× e2it sin(p) sin(q/2)−i(m+n)q/2 (A8)

=
∫

dp

2π
e−ip(m−n)

×
∫ +∞

−∞

du

2πt | sin(p) cos (q(u)/2)|
×Fp(q(u))eiu−i(m+n)q(u)/2. (A9)

The steady-state assumption now implies that the integral on
u is dominated by finite values of u when t → ∞ and, since
m + n is finite, we can replace q(u) by zero in the exponential
as well as in cos(q/2). We therefore get some translation-
invariant correlations:

〈c+
m(t)cn(t)〉t→∞ =

∫
dp

2π
e−ip(m−n)G(p) (A10)

with

G(p) = 〈c+
p cp〉NESS = 1

t | sin(p)|
∫ +∞

−∞

du

2π
Fp(q(u))eiu.

(A11)

As we will see, although q(u) ∼ u/t , it would however be
incorrect to replace q(u) by zero in Fp(q(u)).

For q = 0, Fp(0) merely measures the occupation number
〈c+

p cp〉 at t = 0 (conserved quantity) and does not contain the
information about the left/right spatial structure of the initial
state, and thus does not have the information about the current
that will flow in the steady state.58

This information is therefore encoded in the expansion of
Fp(q) in the vicinity of q = 0. From the various initial states
studied so far (Ref. 15 in particular), it appears that for small
q the initial-state correlations Fp are dominated by some pole
with residue noted f (p) ∈ R:

Fp(q) ∼ −if (p)

q − i0+sgn(f (p))
(A12)

This form will be justified in Appendix A 3 and the precise
form of residue f (p) will be given (see also Appendix B).

Remarks: (i) the sgn(f (p)) insures a positive contribution
to Fp(0), as it should since Fp(0) = N〈c+

p cp〉. (ii) On a finite
chain the pole divergence at q = 0 is cut by the system size
N , so 0+ ∼ 1/N . (iii) In general the behavior close to q = 0
is the sum of two terms, one with f +(p) > 0 and another one
with f −(p) < 0. If f +(p) + f −(p) = 0 we are left with a δ

function at q = 0 [this is realized if the initial state is spatially
homogeneous: Fp(q) ∼ δ(q)].

From the Ansätze above, we get

G(p) = sgn(p)f (p)

×
∫ +∞

−∞

du

2iπ

eiu

u − i0+sgn(f (p)) sin(p)
, (A13)

which can be computed using a contour in the complex plane
extending to Im(u) → +∞. Depending on sgn(f (p) sin(p))
this contour will—or will not—enclose the pole and we get

G(p) = sgn(p)f (p)θ (f (p)p) (A14)

= |f (p)|θ (f (p)p). (A15)

In other words, we find a contribution to the steady-state
correlations 〈c+

k ck′ 〉NESS which is diagonal in momentum
space and simply related to the pole residue of the initial-
state correlations. Remark: for a general dispersion relation,
sgn( sin(p)) = sgn(p) should be replaced by the sign of the
group velocity ∂pεp.

2. Reduced density matrix and generalized Gibbs ensemble

The Gaussian nature of the steady state allows us to write
its density matrix in terms of its two-point correlations. In the
present case we find

ρNESS = 1

Z
exp

(
−

∑
p

λpc†pcp

)
, (A16)

Z =
∏
p

1

1 + e−λp
(A17)

with λp = ln( 1−G(p)
G(p) ) to ensure Tr[c†pcpρ] = G(p). We note

that for the modes p which are completely occupied (〈c†pcp〉 =
1) or completely empty (〈c†pcp〉 = 0), λp is respectively equal
to −∞ or +∞. Although very simple in terms of the fermionic
operators, this reduced density matrix corresponds to some
rather complex state in terms of the original spin degrees of
freedom (due to the nonlocal character of the Jordan-Wigner
transformation). Since the number of occupancies 〈c†pcp〉
corresponds to all the conserved quantities of the model, we
note that this density matrix is a particular case of the form
proposed by Rigol et al. for generalized equilibrium states of
integrable systems.26

In Ref. 10, Lancaster and Mitra argued that the generalized
Gibbs ensemble (GGE) cannot apply to the present spatially
inhomogeneous quenches. The argument is based on the (cor-
rect) observation that the expectation values of the conserved
quantities Ip (here Ip = c

†
pcp) are different in the initial state

and in the steady state. The expectation values of c
†
pcp are

of course independent of time if the Fourier transform is
performed on the whole chain, but the steady-state region is
only defined on the subsystem of size l ∼ vt . This difference
between the “global” 〈c†pcp〉 and 〈c†pcp〉NESS is the reason why
the steady-state occupation numbers G(p) are not those of the
initial state Fp(q = 0). In our calculation, this difference is the
difference between a δ-function behavior and a pole behavior
in Fp(q). Our point of view is thus that the steady-state density
matrix does have a GGE form, but the expectation values of the
conserved quantities are related in a nontrivial way to that of
the initial state. So, strictly speaking, the GGE hypothesis does
not describe the NESS. The latter nevertheless has a density
matrix of the GGE form, but there, the conserved quantities
are not those of the initial state. As discussed in Sec. V C, one
however recovers the initial-state occupation number 〈c†kck〉 in
the very long-time limit after many bounces (t  L). It is only
in this regime that the standard GGE is obtained.

3. Relation to the initial-state occupation numbers

From the argument above we see that a small fraction
of the information contained in the initial correlations Fp(q)
“survives” in the steady-state regime, characterized by G(p).
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In turn, we may ask how to relate this residue information
to the initial real-space correlations. As expected on physical
grounds, it is the the correlations between sites which are far
on the left or far on the right of the chain which determine the
steady-state correlations. We Fourier transform the initial time
correlation Fp(q) to real space,

Fp(r) =
∫

dq

2π
Fp(q)e−iqr/2 (A18)

=
∑

n ∈ Z if r even
n ∈ Z + 1

2 if r odd

〈c†r/2+ncr/2−n〉e2ipn (A19)

to make clear that the relative momentum q is conjugate to
the center of mass r of the two sites (Wigner function). If we
replace Fp(q) by its pole close to q = 0 we get the behavior of
Fp(r) for r → ±∞. Far from the origin (|r|  1) a pole of the
form of Eq. (A12) corresponds to a step (Heaviside) function
in real space:∫ π

−π

dq

2π

−if

q − i0+sgn(f )
e−iqr/2 
 |f |θ (−r f ). (A20)

We conclude that Fp(q → 0) is is composed by (i) a first pole
with residue f +

p � 0 coming from the p component of the

correlation 〈c†r/2+ncr/2−n〉 for two sites far on the left (|r| →
−∞), and (ii) a second pole with f −

p < 0 coming from the
correlations between sites far on the right:

f ±
p = ±Fp(r → ∓∞). (A21)

We consider some initial state which is asymptotically
homogeneous in space far on the left (r → −∞), with
〈c†pcp〉 = n−(p) and also asymptotically homogeneous far on
the right (r → +∞), with 〈c†pcp〉 = n+(p). In other words,
Fp(r → ±∞) = n±(p). Using Eq. (A15) and Eq. (A21) we
obtain

G(p) = Fp(r → −∞)θ (p) + Fp(r → ∞)θ (−p). (A22)

We finally have a relation between the steady-state distri-
bution G(p) and the initial time correlations. As expected, the
steady state is independent of the details of the initial state at
finite distance from the origin. Only the correlations at ±∞
matter, which is physically simple to understand since these
regions far from the origin act as reservoirs which drive the
central region out of equilibrium. If we specialized to the
situation where the left (respectively right) half of the chain
is prepared at t = 0 in a equilibrium state at temperature T1

(respectively T2), we find a steady state characterized by a
combination of two Fermi distributions (with temperature T1

for positive momenta, and with temperature T2 for negative p),
as obtained by an explicit—but somehow more technical—
calculations in Refs. 16 and 15.

If we now have two half chains at zero temperature but
different chemical potentials (magnetic fields in the spin
language). We have two different well defined Fermi momenta
k±
F far on the left and far on the right. Equation (A22) translates

into a simple “rectangular” distribution: G(p) = 1 if −|k−
F | �

p � |k+
F | and G(p) = 0 otherwise. This type of steady state

has already been obtained by an explicit calculation starting
from Antal’s domain-wall state.6

We finally note that once G(p) is known, it is a elementary
task to compute the particle and energy currents J and JE

flowing in the steady state:

J = 1

2i
〈c†i+1ci − c

†
i ci+1〉 =

∫ π

−π

dp

2π
sin(p)G(p), (A23)

JE = 1

4i
〈c†i−1ci+1 − c

†
i+1ci−1〉

= −
∫ π

−π

dp

2π
sin(p) cos(p)G(p). (A24)

APPENDIX B: EXPLICIT CALCULATION OF THE POLE
RESIDUE IN ANTAL’S INITIAL STATE

In this section we present an explicit calculation of the
q 
 0 behavior of the initial-state correlator Fp(q) for a
domain-wall state. This initial state is a generalization of
that introduced by Antal et al.6 We define some annihilation
operators for the left (L) and right (R) halves of the chain:

Rk = 1√
N

N∑
j=1

e−ikj cj , (B1)

Lk = 1√
N

0∑
j=−N+1

e−ikj cj , (B2)

where N = L/2. The initial state |φ〉 is then defined as a tensor
product of two states on the left and the right half:

|φ〉 = |φL〉 ⊗ |φR〉 (B3)

with

|φL〉 =
k+
F∏

k=−k+
F

L
†
k|0〉 and |φR〉 =

k−
F∏

k=−k−
F

R
†
k|0〉. (B4)

The two Fermi momenta k±
F define the densities (magneti-

zations) on the two sides. Since it is a tensor product, the
correlations 〈φ|c†xcy |φ〉 vanish if x and y are not on the same
side. If they are, we get

〈φ|c†xcy |φ〉 =

⎧⎪⎨
⎪⎩

1
N

∫ k−
F

−k−
F

dq

2π
e−iq(x−y) x,y � 1,

1
N

∫ k+
F

−k+
F

dq

2π
e−iq(x−y) x,y < 0.

(B5)

Now we Fourier transform these correlations to get F (k,k′) =
〈φ|c†kck′ |φ〉:

F (k,k′) = FL(k,k′) + FR(k,k′), (B6)

FR(k,k′) =
∑

x,y�1

∫ k−
F

−k−
F

dq

2π
e−iq(x−y)+ikx−ik′y, (B7)

and FL(k,k′) is simply obtained by changing the sum into∑
x,y�0. In the following we restrict the discussion to FR

for brevity. The sum over x � 0 is made convergent in the
thermodynamic limit by changing k into k + i0+. In the
same way, we regularize the sum over y by k′ → k′ + i0−.
These sums and the integration over dq can then be done and
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THIAGO SABETTA AND GRÉGOIRE MISGUICH PHYSICAL REVIEW B 88, 245114 (2013)

lead to

FR(k,k′) = 1

2iπ

1

1 − e−i(k−k′)

[
(B8)

ln

(
eik−

F − e−ik

e−ik−
F − e−ik

)
− ln

(
eik−

F − e−ik′

e−ik−
F − e−ik′

)
(B9)

− iπ if k ∈ [−k−
F ,k−

F ] (B10)

− iπ if k′ ∈ [−k−
F ,k−

F ]

]
. (B11)

Now we want to extract the pole contributions when k is close
to k′. The two ln vanish in this limit and we are left with

FR(k,k′) 

{

i
k−k′+i0+ k ∈ [−k−

F ,k−
F ],

0 k /∈ [−k−
F ,k−

F ].
(B12)

The expression above corresponds to Eq. (A12) with f (p) =
f R(p):

f R(p) =
{−1 p ∈ [−k−

F ,k−
F ],

0 otherwise.
(B13)

In a similar way, we get another pole coming from FL(k,k′):

f L(p) =
{

1 p ∈ [−k+
F ,k+

F ],

0 otherwise.
(B14)

Combining Eq. (A15) with Eqs. (B13) and (B14), we finally
obtain the steady-state occupation numbers:

G(p) =
{

1 k ∈ [−k−
F ,k+

F ],

0 otherwise.
(B15)
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